If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-16=180
We move all terms to the left:
3x^2-16-(180)=0
We add all the numbers together, and all the variables
3x^2-196=0
a = 3; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·3·(-196)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{3}}{2*3}=\frac{0-28\sqrt{3}}{6} =-\frac{28\sqrt{3}}{6} =-\frac{14\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{3}}{2*3}=\frac{0+28\sqrt{3}}{6} =\frac{28\sqrt{3}}{6} =\frac{14\sqrt{3}}{3} $
| 5x+3(2x-3)=9x-5+2x | | 4x-7-2x=5 | | x+2x+4x=7x= | | x-22=2x-60 | | x3+3x2-5x-15=0 | | 11x-48=7x | | 3x-42=5x-100 | | x+2x+4x=7x=14 | | 9(w-9)-2=-7+7(w-8 | | 9x+8-12=3x+2 | | 5x-79+4x-92=180 | | 8x-6=5x+128x−6=5x+12 | | 5x+18-3x=20+6 | | 20+71=56=3a | | X(6)+y=10 | | 5x-34=10x-79 | | 3/5t-6=18 | | f-(-4)=12=f | | 2x2+-49=1 | | 3x2-7x-12=0 | | -23+5a=-13 | | -4u^2=48 | | 7y-30=5y | | 2a+1+2a+1+2a+1=3+6a | | 3c+12=9c | | 12(2x+5)= | | 5b-20=b+28 | | 7(y+10)=–14 | | 90+2x+3x+5=18 | | 7(c+9)=7c+64 | | 8x-45=3x+50 | | 3w+3.2=-1.6 |